

SQLAlchemy-ImageAttach

[image: PyPI]
 [https://pypi.org/project/SQLAlchemy-ImageAttach/][image: Read the Docs]
 [https://sqlalchemy-imageattach.readthedocs.io/][image: Build Status]
 [https://travis-ci.org/dahlia/sqlalchemy-imageattach][image: Coverage Status]
 [https://coveralls.io/r/dahlia/sqlalchemy-imageattach]SQLAlchemy-ImageAttach is a SQLAlchemy [http://www.sqlalchemy.org/] extension for attaching images to
entity objects. It provides the following features:

	Storage backend interface

	You can use file system backend on your local development box,
and switch it to AWS S3 [https://aws.amazon.com/s3/] when it’s deployed to the production box.
Or you can add a new backend implementation by yourself.

	Maintaining multiple image sizes

	Any size of thumbnails can be generated from the original size
without assuming the fixed set of sizes. You can generate a thumbnail
of a particular size if it doesn’t exist yet when the size is requested.
Use RRS [https://aws.amazon.com/s3/reduced-redundancy/] (Reduced Redundancy Storage) for reproducible thumbnails on S3.

	Every image has its URL

	Attached images can be exposed as a URL.

	SQLAlchemy transaction aware

	Saved file are removed when the ongoing transaction has been rolled back.

	Tested on various environments

	
	Python versions: Python 2.7, 3.3 or higher, PyPy [http://pypy.org/]

	DBMS: PostgreSQL, MySQL, SQLite

	SQLAlchemy: 0.9 or higher (tested on 0.9 to 1.1; see CI as well)

Installation

It’s available on PyPI [https://pypi.org/project/SQLAlchemy-ImageAttach/]:

$ pip install SQLAlchemy-ImageAttach

User’s guide

	Declaring Image Entities
	Object type

	Object identifier

	Storages
	Choosing the right storage implementation

	Using filesystem on the local development box

	Implementing your own storage

	Migrating storage

	Attaching Images
	Context

	Attaching from file object

	Attaching from byte string

	Getting image urls

	Getting image files

	Getting image binary

	Thumbnails

	Expliciting storage

	Implicit contexts

	Multiple Image Sets
	Object identifier

	Choosing image set to deal with

	SQLAlchemy-ImageAttach Changelog
	Version 1.1.0

	Version 1.0.0

	Version 0.9.0

	Version 0.8.2

	Version 0.8.1

	Version 0.8.0

	Version 0.8.0.dev-20130531

sqlalchemy_imageattach — API

	sqlalchemy_imageattach.context — Scoped context of image storage

	sqlalchemy_imageattach.entity — Image entities

	sqlalchemy_imageattach.file — File proxies

	sqlalchemy_imageattach.migration — Storage migration

	sqlalchemy_imageattach.store — Image storage backend interface

	sqlalchemy_imageattach.util — Utilities

	sqlalchemy_imageattach.version — Version data

sqlalchemy_imageattach.stores — Storage backend implementations

	sqlalchemy_imageattach.stores.fs — Filesystem-backed image storage

	sqlalchemy_imageattach.stores.s3 — AWS S3 backend storage

Open source

SQLAlchemy-ImageAttach is an open source software written by Hong Minhee [https://hongminhee.org/].
The source code is distributed under MIT license [https://minhee.mit-license.org/], and you can find it
at GitHub repository [https://github.com/dahlia/sqlalchemy-imageattach]:

$ git clone git://github.com/dahlia/sqlalchemy-imageattach.git

If you find any bug, please create an issue to the issue tracker [https://github.com/dahlia/sqlalchemy-imageattach/issues].
Pull requests are also always welcome!

Check out Changelog as well.

Declaring Image Entities

It’s easy to use with sqlalchemy.ext.declarative [http://docs.sqlalchemy.org/en/rel_1_1/orm/extensions/declarative/api.html#module-sqlalchemy.ext.declarative]:

from sqlalchemy import Column, ForeignKey, Integer, Unicode
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy_imageattach.entity import Image, image_attachment

Base = declarative_base()

class User(Base):
 """User model."""

 id = Column(Integer, primary_key=True)
 name = Column(Unicode, nullable=False)
 picture = image_attachment('UserPicture')
 __tablename__ = 'user'

class UserPicture(Base, Image):
 """User picture model."""

 user_id = Column(Integer, ForeignKey('user.id'), primary_key=True)
 user = relationship('User')
 __tablename__ = 'user_picture'

In the above example, we declare two entity classes. UserPicture which
inherits Image is an image entity,
and User owns it. image_attachment()
function is a specialized relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship] for image
entities. You can understand it as one-to-many relationship.

Object type

Every image class has object_type
string, which is used by the storage.

UserPicture in the above example omits object_type property,
but it can be overridden if needed. Its default value is the table name
(underscores will be replaced by hyphens).

When would you need to override object_type? The most common case
is when you changed the table name. Identifiers like path names that
are internally used by the stoage won’t be automatically renamed even if
you change the table name in the relational database. So you need to
maintain the same object_type
value.

Object identifier

Every image instance has object_id
number, which is used by the storage. A pair of (object_type, object_id is an unique key for an image.

UserPicture in the above example omits object_id property, because it
provides the default value when the primary key is integer or UUID.
It has to be explicitly implemented when the primary key is not integer/UUID or
is composite key.

Changed in version 1.1.0: Since 1.1.0, object_id has
a more default implementation for UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] primary keys.
If a primary key is not composite and UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] type,
object_id for that doesn’t have
to be implemented.

For example, the most simple and easiest (although naive) way to implement
object_id for the string primary
key is hashing it:

@property
def object_id(self):
 return int(hashlib.sha1(self.id).hexdigest(), 16)

If the primary key is a pair, encode a pair into an integer:

@property
def object_id(self):
 a = self.id_a
 b = self.id_b
 return (a + b) * (a + b) + a

If the primary key is composite of three or more columns, encode a tuple
into a linked list of pairs first, and then encode the pair into an integer.
It’s just a way to encode, and there are many other ways to do the same.

Storages

Choosing the right storage implementation

There are currently only two implementations:

	sqlalchemy_imageattach.stores.fs

	sqlalchemy_imageattach.stores.s3

We recommend you to use fs on your local
development box, and switch it to s3 when
you deploy it to the production system.

If you need to use another storage backend, you can implement the interface
by yourself: Implementing your own storage.

Using filesystem on the local development box

The most of computers have a filesystem, so using fs storage is suitable for development.
It works even if you are offline.

Actually there are two kinds of filesystem storages:

	FileSystemStore

	It just stores the images, and simply assumes that you have a separate
web server for routing static files e.g. Lighttpd [http://www.lighttpd.net/], Nginx [http://nginx.org/]. For example,
if you have a sever configuration like this:

server {
 listen 80;
 server_name images.yourapp.com;
 root /var/local/yourapp/images;
}

FileSystemStore should
be configured like this:

sqlalchemy_imageattach.stores.fs.FileSystemStore(
 path='/var/local/yourapp/images',
 base_url='http://images.yourapp.com/'
)

	HttpExposedFileSystemStore

	In addition to FileSystemStore‘s
storing features, it does more for you: actually serving files through
WSGI. It takes an optional prefix for url instead of base_url:

sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore(
 path='/var/local/yourapp/images',
 prefix='static/images/'
)

The default prefix is simply images/.

It provides wsgi_middleware()
method to inject its own server to your WSGI application. For example,
if you are using Flask [http://flask.pocoo.org/]:

from yourapp import app
app.wsgi_app = store.wsgi_middleware(app.wsgi_app)

or if Pyramid [http://www.pylonsproject.org/]:

app = config.make_wsgi_app()
app = store.wsgi_middleware(app)

or if Bottle [http://bottlepy.org/]:

app = bottle.app()
app = store.wsgi_middleware(app)

Note

The server provided by this isn’t production-ready quality, so do not
use this for your production service. We recommend you to use
FileSystemStore with
a separate web server like Nginx [http://nginx.org/] or Lighttpd [http://www.lighttpd.net/] instead.

Implementing your own storage

You can implement a new storage backend if you need. Every storage has to
inherit Store and implement
the following four methods:

	put_file()

	The method puts a given image to the storage.

It takes a file that contains the image blob, four identifier
values (object_type, object_id, width, height) for
the image, a mimetype of the image, and a boolean value
(reproducible) which determines whether it can be reproduced or not.

For example, if it’s a filesystem storage, you can make directory/file
names using object_type, object_id, and size values, and suffix
using mimetype. If it’s a S3 implementation, it can determine
whether to use RRS (reduced redundancy storage) or standard storage
using reproducible argument.

	get_file()

	The method finds a requested image in the storage.

It takes four identifier values (object_type, object_id,
width, height) for the image, and a mimetype of the image.
The return type must be file-like.

It should raise IOError [https://docs.python.org/3/library/exceptions.html#IOError] or its subtype
when there’s no requested image in the storage.

	get_url()

	The method is similar to get_file() except it returns
a URL of the image instead of a file that contains the image blob.

It doesn’t have to raise errors when there’s no requested image
in the storage. It’s okay even if the returned URL is a broken
link. Because we assume that it’s called only when the requested
image is sure to be there. It means you can quickly generate URLs
by just calculation without any I/O.

Moreover, you can assume that these URLs are never cached, because
SQLAlchemy-ImageAttach will automatically appends a query string
that contains of its updated timestamp for you.

	delete_file()

	The method deletes a requested image in the storage.

It takes the same arguments to get_file() and get_url() methods.

It must doesn’t raise any exception even if there’s no requested
image.

The constructor of it can be anything. It’s not part of the interface.

If you believe your storage implementation could be widely used as well
as for others, please contribute your code by sending a pull request!
We always welcome your contributions.

Migrating storage

SQLAlchemy-ImageAttach provides a simple basic utility to migrate
image data in an old storage to a new storage (although it’s not
CLI but API). In order to migrate storage data you need used
database as well, not only storage. Because some metadata are only
saved to database.

The following code shows you how to migrate all image data in old_store
to new_store:

plan = migrate(session, Base, old_store, new_store)
plan.execute()

In the above code, Base is declarative base class (which is created by
sqlalchemy.ext.declarative.declarative_base() [http://docs.sqlalchemy.org/en/rel_1_1/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base]), and session is
an instance of SQLAlchemy Session [http://docs.sqlalchemy.org/en/rel_1_1/orm/session_api.html#sqlalchemy.orm.session.Session].

If you want to know progress of migration, iterating the result:

plan = migrate(session, Base, old_store, new_store)
for image in plan:
 print('Migrated ' + repr(image))

Or pass a callback function to execute() method:

def progress(image):
 print('Migrated ' + repr(image))

plan = migrate(session, Base, old_store, new_store)
plan.execute(progress)

Attaching Images

You’ve declared entities and choose a storage,
so then the next step is to actually attach images to objects! In order to
determine what storage to save images into, you can set the current context.

Context

A context knows what storage you are using now, and tell entities the storage
to use. You can set a context using store_context() function in with [https://docs.python.org/3/reference/compound_stmts.html#with]
block:

from sqlalchemy_imageattach.context import store_context

with store_context(store):
 with open('image_to_attach.jpg') as f:
 entity.picture.from_file(f)
 # session handling must be here - inside of context

You would face ContextError
when you try attaching images without any context.

Attaching from file object

A way to attach an image to an object is loading it from a file object using
from_file() method.
The following example code shows how to attach a profile picture to an user:

from yourapp.config import session, store

def set_picture(request, user_id):
 try:
 user = session.query(User).get(int(user_id))
 with store_context(store):
 user.picture.from_file(request.files['picture'])
 except Exception:
 session.rollback()
 raise
 session.commit()

It takes any file-like objects as well e.g.:

from urllib2 import urlopen

def set_picture_url(request, user_id):
 try:
 user = session.query(User).get(int(user_id))
 picture_url = request.values['picture_url']
 with store_context(store):
 user.picture.from_file(urlopen(picture_url))
 except Exception:
 session.rollback()
 raise
 session.commit()

Note that the responsibility to close files is yours. Because some file-like
objects can be reused several times, or don’t have to be closed (or some of
them even don’t have any close() method).

Attaching from byte string

Of course you can load images from its byte strings. Use
from_blob() method:

from requests import get

def set_picture_url(request, user_id):
 try:
 user = session.query(User).get(int(user_id))
 picture_url = request.values['picture_url']
 image_binary = get(picture_url).content
 with store_context(store):
 user.picture.from_blob(image_binary)
 except Exception:
 session.rollback()
 raise
 session.commit()

Getting image urls

In web server app, for the most part you need just an url of an image, not its
binary content. So BaseImageSet
provides locate() method:

def user_profile(request, user_id):
 user = session.query(User).get(int(user_id))
 with store_context(store):
 picture_url = user.picture.locate()
 return render_template('user_profile.html',
 user=user, picture_url=picture_url)

It returns the url of the original image (which is not resized).
Read about Thumbnails if you want a thumbnail url.

BaseImageSet also implements de facto
standard __html__() special method, so it can be directly rendered in
the most of template engines like Jinja2 [http://jinja.pocoo.org/], Mako [http://makotemplates.org/]. It’s expanded to
 tag on templates:

<div class="user">
 <a href="{{ url_for('user_profile', user_id=user.id) }}"
 title="{{ user.name }}">{{ user.picture }}
</div>

<div class="user">
 <a href="${url_for('user_profile', user_id=user.id)}"
 title="${user.name}">${user.picture}
</div>

The above template codes are equivalent to:

<div class="user">
 <a href="{{ url_for('user_profile', user_id=user.id) }}"
 title="{{ user.name }}"><img src="{{ user.picture.locate() }}"
 width="{{ user.picture.width }}"
 height="{{ user.picture.height }}">
</div>

<div class="user">
 <a href="${url_for('user_profile', user_id=user.id)}"
 title="${user.name}"><img src="${user.picture.locate()}"
 width="${user.picture.width}"
 height="${user.picture.height}">
</div>

Note

Template expansion of BaseImageSet
might raise ContextError.
You should render the template in the context:

with store_context(store):
 return render_template('user_profile.html', user=user)

Or use Implicit contexts.

Getting image files

BaseImageSet provides open_file() method. It returns
a file-like object:

from shutil import copyfileobj

with store_context(store):
 with user.picture.open_file() as f:
 copyfileobj(f, dst)

Note that the responsibility to close an opened file is yours. Recommend to
open it in with [https://docs.python.org/3/reference/compound_stmts.html#with] block.

Getting image binary

There’s a shortcut to read byte string from an opened file.
Use make_blob() method.
The following two ways are equivalent:

make_blob()
with store_context(store):
 blob = user.picture.make_blob()

open().read()
with store_context(store):
 with user.picture.open_file() as f:
 blob = f.read()

Thumbnails

You can make thumbnails and then store them into the store using
generate_thumbnail() method.
It takes one of three arguments: width, height, or ratio:

with store_context(store):
 # Make thumbnails
 width_150 = user.picture.generate_thumbnail(width=150)
 height_300 = user.picture.generate_thumbnail(height=300)
 half = user.picture.generate_thumbnail(ratio=0.5)
 # Get their urls
 width_150_url = width_150.locate()
 height_300_url = width_300.locate()
 half = half.locate()

It returns a made Image object,
and it shares the most of the same methods to
BaseImageSet like
locate(),
open_file(),
make_blob().

Once made thumbnails can be found using find_thumbnail(). It takes one of
two arguments: width or height and returns a found
Image object:

with store_context(store):
 # Find thumbnails
 width_150 = user.picture.find_thumbnail(width=150)
 height_300 = user.picture.find_thumbnail(height=300)
 # Get their urls
 width_150_url = width_150.locate()
 height_300_url = width_300.locate()

It raises NoResultFound [http://docs.sqlalchemy.org/en/rel_1_1/orm/exceptions.html#sqlalchemy.orm.exc.NoResultFound] exception when there’s
no such size.

You can implement find-or-create pattern using these two methods:

def find_or_create(imageset, width=None, height=None):
 assert width is not None or height is not None
 try:
 image = imageset.find_thumbnail(width=width, height=height)
 except NoResultFound:
 image = imageset.generate_thumbnail(width=width, height=height)
 return image

We recommend you to queue generating thumbnails and make it done by backend
workers rather than web applications. There are several tools for that like
Celery [http://www.celeryproject.org/].

Expliciting storage

It’s so ad-hoc, but there’s a way to explicit storage to use without any
context: passing the storage to operations as an argument. Every methods
that need the context also optionally take store keyword:

user.picture.from_file(file_, store=store)
user.picture.from_blob(blob, store=store)
user.picture.locate(store=store)
user.picture.open_file(store=store)
user.picture.make_blob(store=store)
user.picture.generate_thumbnail(width=150, store=store)
user.picture.find_thumbnail(width=150, store=store)

The above calls are all equivalent to the following calls in with [https://docs.python.org/3/reference/compound_stmts.html#with]
block:

with store_context(store):
 user.picture.from_file(file_)
 user.picture.from_blob(blob)
 user.picture.locate()
 user.picture.open_file()
 user.picture.make_blob()
 user.picture.generate_thumbnail(width=150)
 user.picture.find_thumbnail(width=150)

Implicit contexts

If your application already manage some context like request-response lifecycle,
you can make context implicit by utilizing these hooks. SQLAlchemy-ImageAttach
exposes underlayer functions like push_store_context() and
pop_store_context() that are used for
implementing store_context().

For example, use before_request() [http://flask.pocoo.org/docs/0.12/api/#flask.Flask.before_request] and
teardown_request() [http://flask.pocoo.org/docs/0.12/api/#flask.Flask.teardown_request] if you are using Flask [http://flask.pocoo.org/]:

from sqlalchemy_imageattach.context import (pop_store_context,
 push_store_context)
from yourapp import app
from yourapp.config import store

@app.before_request
def start_implicit_store_context():
 push_store_context(store)

@app.teardown_request
def stop_implicit_store_context(exception=None):
 pop_store_context()

Multiple Image Sets

New in version 1.0.0.

In the previous example, each User can have
only a single image set of UserPicture. Although each User has
multiple sizes of UserPicture objects, these UserPicture must be
all the same look except of their width/height.

So, what if we need to attach multiple image sets? Imagine there are Post
objects, and each Post can have zero or more attached pictures that have
different looks each other. (Think of tweets containing multiple images,
or Facebook posts containing multiple photos.) In these case, you don’t need
only an image set, but a set of image sets. One more dimension should be there.

Fortunately, image_attachment() provides
uselist=True option. It configures the relationship to contain multiple
image sets. For example:

class Post(Base):
 """Post containing zero or more photos."""

 id = Column(Integer, primary_key=True)
 content = Column(UnicodeText, nullable=False)
 photos = image_attachment('PostPhoto', uselist=True)
 __tablename__ = 'post'

class PostPhoto(Base, Image):
 """Photo contained by post."""

 post_id = Column(Integer, ForeignKey(Post.id), primary_key=True)
 post = relationship(Post)
 order_index = Column(Integer, primary_key=True) # least is first
 __tablename__ = 'post_photo'

In the above example, we should pay attention to two things:

	uselist=True option of
image_attachment()

	PostPhoto.order_index column which is a part of primary key columns.

As previously stated, uselist=True option configures the Post.photos
relationship to return a set of image sets, rather than an image set.

The subtle thing is PostPhoto.order_index column. If the relationship is
configured with uselist=True, the image entity must have extra
discriminating primary key columns to group each image set.

Object identifier

If the image type need to override object_id (see also
Object identifier), the returning object identifier also must be possible
to be discriminated in the same way e.g.:

@property
def object_id(self):
 key = '{0},{1}'.format(self.id, self.order_index)
 return int(hashlib.sha1(key).hexdigest(), 16)

Choosing image set to deal with

Because uselist=True option adds one more dimension, you need to choose
an image set to deal with before attaching or getting. The
get_image_set()
method is for that:

post = session.query(Post).get(post_id)
first_photo = post.photos.get_image_set(order_index=1)
original_image_url = first_photo.locate()
thumbnail_url = first_photo.find_thumbnail(width=300).locate()

Note that the method can take criteria unsatisfied by already attached images.
Null image sets returned by such criteria can be used for attaching a new
image set:

new_photo = post.photos.get_image_set(order_index=9)
with open(new_image_path, 'rb') as f:
 new_photo.from_file(f)
 # order_index column of the created image set becomes set to 9.

Need to enumerate all attached image sets? Use image_sets property:

def thumbnail_urls():
 for image_set in post.photos.image_sets:
 yield image_set.find_thumbnail(width=300).locate()

SQLAlchemy-ImageAttach Changelog

Version 1.1.0

Released on October 10, 2017.

	Dropped Python 2.6 and 3.2 support.

	Dropped SQLAlchemy 0.8 support.

	Now became to officially support Python 3.6 (although it already has
worked well).

	Now object_id has a more
default implementation for UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] primary keys.
If a primary key is not composite and UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] type,
sqlalchemy_imageattach.entity.Image.object_id for that doesn’t have to
be implemented.

	BaseImageSet.generate_thumbnail() became to strip metadata such as
all profiles and comments from thumbnail images. It doesn’t affect to
original images.

	S3 storage backend (sqlalchemy_imageattach.stores.s3) now supports
Signature Version 4 [https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html] (AWS4Auth). Signature Version 4 is used if
the region of
S3Store is determined.
Otherwise Signature Version 2 [https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html] (which is deprecated since January 30, 2014)
is used as it has been. [#34 [https://github.com/dahlia/sqlalchemy-imageattach/issues/34]]
	Added region parameter
to S3Store.

	Added
underlying_region
and
overriding_region
parameters to S3SandboxStore.

	Added S3RequestV4 class.

	Renamed S3Request to
S3RequestV2.
The existing S3Request still
remains for backward compatibility, but it’s deprecated.

	Added AuthMechanismError
exception.

	Added max_retry parameter
to S3Store and
S3SandboxStore classes.

Version 1.0.0

Released on June 30, 2016.

	Added Multiple Image Sets support. [#30 [https://github.com/dahlia/sqlalchemy-imageattach/issues/30] by Jeong YunWon]
	image_attachment() function
now can take uselist=True option. It configures to the relationship
to attach multiple images.

	ImageSet became deprecated,
because it was separated to SingleImageSet, and BaseImageSet which is a common base
class for SingleImageSet and
MultipleImageSet.

	Added MultipleImageSet and
ImageSubset.

	Added host_url_getter option to HttpExposedFileSystemStore.

	Now from_file() and
from_blob() can take
extra_args/extra_kwargs to be passed to entity model’s constructor.
[#32 [https://github.com/dahlia/sqlalchemy-imageattach/issues/32], #33 [https://github.com/dahlia/sqlalchemy-imageattach/issues/33] by Vahid]

	Added sqlalchemy_imageattach.version.SQLA_COMPAT_VERSION and
sqlalchemy_imageattach.version.SQLA_COMPAT_VERSION_INFO constants.

Version 0.9.0

Released on March 2, 2015.

	Support SVG (image/svg+xml) and
PDF (application/pdf).

Version 0.8.2

Released on July 30, 2014.

	Support Python 3.4.

	Fixed UnboundLocalError [https://docs.python.org/3/library/exceptions.html#UnboundLocalError] of S3Store. [#20 [https://github.com/dahlia/sqlalchemy-imageattach/issues/20] by Peter Lada]

Version 0.8.1

Released on August 26, 2013.

	Added sqlalchemy_imageattach.migration module for storage migration.
See also Migrating storage guide.

	Added public_base_url option to S3Store. It’s useful when used with
CDN e.g. CloudFront [http://aws.amazon.com/cloudfront/].

Version 0.8.0

Released on June 20, 2013.

	Support Python 3.2 and 3.3. (Required minimum version of Wand also becomes
0.3.0 from 0.2.0.)

	Added manual push_store_context() and
pop_store_context() API. It’s useful
when you can’t use with [https://docs.python.org/3/reference/compound_stmts.html#with] keyword e.g. setup/teardown hooks.

	Image.object_type
property now has the default value when the primary key is an integer.

	Columns of Image class become
able to be used as SQL expressions.

	Added block_size option to StaticServerMiddleware.

	StaticServerMiddleware now
supports 'wsgi.file_wrapper'. See also optional platform-specific
file handling [http://www.python.org/dev/peps/pep-0333/#optional-platform-specific-file-handling].

Version 0.8.0.dev-20130531

Initially released on May 31, 2013.

sqlalchemy_imageattach.context — Scoped context of image storage

Scoped context makes other modules able to vertically take an image
store object without explicit parameter for it. It’s similar to
Flask [http://flask.pocoo.org/]‘s design decision and Werkzeug [http://werkzeug.pocoo.org/]‘s context locals.
Context locals are workaround to use dynamic scoping in
programming languages that doesn’t provide it (like Python).

For example, a function can take an image store to use as its parameter:

def func(store):
 url = store.locate(image)
 # ...

func(fs_store)

But, what if for various reasions it can’t take an image store
as parameter? You should vertically take it using scoped context:

def func():
 current_store.locate(image)

with store_context(fs_store):
 func()

What if you have to pass the another store to other subroutine?:

def func(store):
 decorated_store = DecoratedStore(store)
 func2(decorated_store)

def func2(store):
 url = store.locate(image)
 # ...

func(fs_store)

The above code can be rewritten using scoped context:

def func():
 decorated_store = DecoratedStore(current_store)
 with store_context(decorated_store):
 func2()

def func2():
 url = current_store.locate(image)
 # ...

with store_context(fs_store):
 func()

	
exception sqlalchemy_imageattach.context.ContextError

	The exception which rises when the current_store is required
but there’s no currently set store context.

	
class sqlalchemy_imageattach.context.LocalProxyStore(get_current_object, repr_string=None)

	Proxy of another image storage.

	Parameters:	
	get_current_object (typing.Callable[[],
store.Store]) – a function that returns “current” store

	repr_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional string for repr() [https://docs.python.org/3/library/functions.html#repr]

	
sqlalchemy_imageattach.context.context_stacks = {}

	(dict [https://docs.python.org/3/library/stdtypes.html#dict]) The dictionary of concurrent contexts to their stacks.

	
sqlalchemy_imageattach.context.current_store = sqlalchemy_imageattach.context.current_store

	(LocalProxyStore) The currently set context of the image store
backend. It can be set using store_context().

	
sqlalchemy_imageattach.context.get_current_context_id()

	Identifis which context it is (greenlet, stackless, or thread).

	Returns:	the identifier of the current context.

	
sqlalchemy_imageattach.context.get_current_store()

	The lower-level function of current_store. It returns
the actual store instance while current_store is a just
proxy of it.

	Returns:	the actual object of the currently set image store

	Return type:	Store

	
sqlalchemy_imageattach.context.pop_store_context()

	Manually pops the current store from the stack.

Although store_context() and with [https://docs.python.org/3/reference/compound_stmts.html#with] keyword are
preferred than using it, it’s useful when you have to push and pop
the current stack on different hook functions like setup/teardown.

	Returns:	the current image store

	Return type:	Store

	
sqlalchemy_imageattach.context.push_store_context(store)

	Manually pushes a store to the current stack.

Although store_context() and with [https://docs.python.org/3/reference/compound_stmts.html#with] keyword are
preferred than using it, it’s useful when you have to push and pop
the current stack on different hook functions like setup/teardown.

	Parameters:	store (Store) – the image store to set to the current_store

	
sqlalchemy_imageattach.context.store_context(store)

	Sets the new (nested) context of the current image storage:

with store_context(store):
 print current_store

It could be set nestedly as well:

with store_context(store1):
 print current_store # store1
 with store_context(store2):
 print current_store # store2
 print current_store # store1 back

	Parameters:	store (Store) – the image store to set to the current_store

sqlalchemy_imageattach.entity — Image entities

This module provides a short way to attach resizable images
to other object-relationally mapped entity classes.

For example, imagine there’s a fictional entity named
User and it has its picture and
front_cover. So there should be two
image entities that subclass Image mixin:

class UserPicture(Base, Image):
 '''User's profile picture.'''

 user_id = Column(Integer, ForeignKey('User.id'), primary_key=True)
 user = relationship('User')

 __tablename__ = 'user_picture'

You have to also inherit your own declarative_base() [http://docs.sqlalchemy.org/en/rel_1_1/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base] class (Base in the example).

Assume there’s also UserFrontCover in the same way.

Note that the class can override object_id property.
Backend storages utilize this to identify images e.g. filename, S3 key.
If the primary key of the image entity is integer, object_id
automatically uses the primary key value by default, but it can be
overridden if needed, and must be implemented if the primary key is not
integer or composite key.

There’s also object_type property. Image provides
the default value for it as well. It uses the class name (underscores
will be replaced by hyphens) by default, but you can override it.

These Image subclasses can be related to the their
‘parent’ entity using image_attachment() function.
It’s a specialized version of SQLAlchemy’s built-in
relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship] function, so you can pass
the same options as relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship] takes:

class User(Base):
 '''Users have their profile picture and front cover.'''

 id = Column(Integer, primary_key=True)
 picture = image_attachment('UserPicture')
 front_cover = image_attachment('UserFrontCover')

 __tablename__ = 'user'

It’s done, you can store the actual image files using
from_file() or from_blob()
method:

with store_context(store):
 user = User()
 with open('picture.jpg', 'rb') as f:
 user.picture.from_blob(f.read())
 with open('front_cover.jpg', 'rb') as f:
 user.front_cover.from_file(f)
 with session.begin():
 session.add(user)

Or you can resize the image to make thumbnails using
generate_thumbnail() method:

with store_context(store):
 user.picture.generate_thumbnail(ratio=0.5)
 user.picture.generate_thumbnail(height=100)
 user.front_cover.generate_thumbnail(width=500)

	
sqlalchemy_imageattach.entity.VECTOR_TYPES = frozenset({'image/svg+xml', 'application/pdf'})

	(typing.AbstractSet [https://docs.python.org/3/library/typing.html#typing.AbstractSet][str [https://docs.python.org/3/library/stdtypes.html#str]]) The set of vector image types.

	
class sqlalchemy_imageattach.entity.BaseImageSet

	The abstract class of the following two image set types:

	SingleImageSet

	ImageSubset

The common things about them, abstracted by BaseImageSet, are:

	It always has an original image, and has only one
original image.

	It consists of zero or more thumbnails generated from original
image.

	Thumbnails can be generated using generate_thumbnail() method.

	Generated thumbnails can be found using find_thumbnail() method.

You can think image set of an abstract image hiding its size details.
It actually encapsulates physical images of different sizes but having
all the same look. So only its original image is canon, and other
thumbnails are replica of it.

Note that it implements __html__() method, a de facto
standard special method for HTML templating. So you can simply use
it in Jinja2 like:

{{ user.profile }}

instead of:

<img src="{{ user.profile|permalink }}"
 width="{{ user.profile.original.width }}"
 height="{{ user.profile.original.height }}">

	
find_thumbnail(width=None, height=None)

	Finds the thumbnail of the image with the given width
and/or height.

	Parameters:	
	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the thumbnail width

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the thumbnail height

	Returns:	the thumbnail image

	Return type:	Image

	Raises:	sqlalchemy.orm.exc.NoResultFound [http://docs.sqlalchemy.org/en/rel_1_1/orm/exceptions.html#sqlalchemy.orm.exc.NoResultFound] – when there’s no image of such size

	
from_blob(blob, store=sqlalchemy_imageattach.context.current_store, extra_args=None, extra_kwargs=None)

	Stores the blob (byte string) for the image
into the store.

	Parameters:	
	blob (str [https://docs.python.org/3/library/stdtypes.html#str]) – the byte string for the image

	store (Store) – the storage to store the image data.
current_store
by default

	extra_args (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – additional arguments to pass to the model’s
constructor.

	extra_kwargs (typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str],
object [https://docs.python.org/3/library/functions.html#object]]) – additional keyword arguments to pass to the
model’s constructor.

	Returns:	the created image instance

	Return type:	Image

New in version 1.0.0: The extra_args and extra_kwargs options.

	
from_file(file, store=sqlalchemy_imageattach.context.current_store, extra_args=None, extra_kwargs=None)

	Stores the file for the image into the store.

	Parameters:	
	file (file-like object, file) – the readable file of the image

	store (Store) – the storage to store the file.
current_store
by default

	extra_args (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – additional arguments to pass to the model’s
constructor.

	extra_kwargs (typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str],
object [https://docs.python.org/3/library/functions.html#object]]) – additional keyword arguments to pass to the
model’s constructor.

	Returns:	the created image instance

	Return type:	Image

New in version 1.0.0: The extra_args and extra_kwargs options.

	
from_raw_file(raw_file, store=sqlalchemy_imageattach.context.current_store, size=None, mimetype=None, original=True, extra_args=None, extra_kwargs=None)

	Similar to from_file() except it’s lower than that.
It assumes that raw_file is readable and seekable while
from_file() only assumes the file is readable.
Also it doesn’t make any in-memory buffer while
from_file() always makes an in-memory buffer and copy
the file into the buffer.

If size and mimetype are passed, it won’t try to read
image and will use these values instead.

It’s used for implementing from_file() and
from_blob() methods that are higher than it.

	Parameters:	
	raw_file (file-like object, file) – the seekable and readable file of the image

	store (Store) – the storage to store the file.
current_store
by default

	size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – an optional size of the image.
automatically detected if it’s omitted

	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional mimetype of the image.
automatically detected if it’s omitted

	original (bool [https://docs.python.org/3/library/functions.html#bool]) – an optional flag which represents whether
it is an original image or not.
defualt is True (meaning original)

	extra_args (collections.abc.Sequence [https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence]) – additional arguments to pass to the model’s
constructor.

	extra_kwargs (typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str],
object [https://docs.python.org/3/library/functions.html#object]]) – additional keyword arguments to pass to the
model’s constructor.

	Returns:	the created image instance

	Return type:	Image

New in version 1.0.0: The extra_args and extra_kwargs options.

	
generate_thumbnail(ratio=None, width=None, height=None, filter='undefined', store=sqlalchemy_imageattach.context.current_store, _preprocess_image=None, _postprocess_image=None)

	Resizes the original (scales up or down) and
then store the resized thumbnail into the store.

	Parameters:	
	ratio (numbers.Real [https://docs.python.org/3/library/numbers.html#numbers.Real]) – resize by its ratio. if it’s greater than 1
it scales up, and if it’s less than 1 it scales
down. exclusive for width and height
parameters

	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – resize by its width. exclusive for ratio
and height parameters

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – resize by its height. exclusive for ratio
and width parameters

	filter (str [https://docs.python.org/3/library/stdtypes.html#str], numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – a filter type to use for resizing. choose one in
wand.image.FILTER_TYPES. default is
'undefined' which means ImageMagick will try
to guess best one to use

	store (Store) – the storage to store the resized image file.
current_store
by default

	_preprocess_image – internal-use only option for preprocessing
original image before resizing

	_postprocess_image – internal-use only option for preprocessing
original image before resizing

	Returns:	the resized thumbnail image. it might be an already
existing image if the same size already exists

	Return type:	Image

	Raises:	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – when there’s no original image yet

	
locate(store=sqlalchemy_imageattach.context.current_store)

	The shorthand of locate() for
the original.

	Parameters:	store (Store) – the storage which contains the image files.
current_store
by default

	Returns:	the url of the original image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
make_blob(store=sqlalchemy_imageattach.context.current_store)

	The shorthand of make_blob() for
the original.

	Parameters:	store (Store) – the storage which contains the image files.
current_store
by default

	Returns:	the byte string of the original image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
open_file(store=sqlalchemy_imageattach.context.current_store, use_seek=False)

	The shorthand of open_file() for
the original.

	Parameters:	
	store (Store) – the storage which contains the image files
current_store
by default

	use_seek (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the file should seekable.
if True it maybe buffered in the memory.
default is False

	Returns:	the file-like object of the image, which is a context
manager (plus, also seekable only if use_seek
is True)

	Return type:	file,
FileProxy,
file-like object

	
original

	(Image) The original image. It could be None
if there are no stored images yet.

	
require_original()

	Returns the original image or just raise
IOError [https://docs.python.org/3/library/exceptions.html#IOError] (instead of returning None).
That means it guarantees the return value is never None
but always Image.

	Returns:	the original image

	Return type:	Image

	Raises:	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – when there’s no original image yet

	
class sqlalchemy_imageattach.entity.BaseImageQuery(entities, session=None)

	The subtype of Query [http://docs.sqlalchemy.org/en/rel_1_1/orm/query.html#sqlalchemy.orm.query.Query] specialized
for Image. It provides more methods and properties over
Query [http://docs.sqlalchemy.org/en/rel_1_1/orm/query.html#sqlalchemy.orm.query.Query].

New in version 1.0.0.

	
class sqlalchemy_imageattach.entity.Image

	The image of the particular size.

Note that it implements __html__() method, a de facto
standard special method for HTML templating. So you can simply use
it in HTML templates like:

{{ user.profile.find_thumbnail(120) }}

The above template is equivalent to:

{% with thumbnail = user.profile.find_thumbnail(120) %}
 <img src="{{ thumbnail.locate() }}"
 width="{{ thumbnail.width }}"
 height="{{ thumbnail.height }}">
{% endwith %}

	
object_type

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The identifier string of the image type.
It uses __tablename__ (which replaces underscores with
hyphens) by default, but can be overridden.

	
created_at = Column('created_at', DateTime(timezone=True), table=None, nullable=False, default=ColumnDefault(<sqlalchemy.sql.functions.now at 0x7f119fe96b38; now>))

	(datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) The created time.

	
height = Column('height', Integer(), table=None, primary_key=True, nullable=False)

	(numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) The image’s height.”“”

	
classmethod identity_attributes()

	A list of the names of primary key fields.

	Returns:	A list of the names of primary key fields

	Return type:	typing.Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]]

New in version 1.0.0.

	
identity_map

	(typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]])
A dictionary of the values of primary key fields with their names.

New in version 1.0.0.

	
locate(store=sqlalchemy_imageattach.context.current_store)

	Gets the URL of the image from the store.

	Parameters:	store (Store) – the storage which contains the image.
current_store
by default

	Returns:	the url of the image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
make_blob(store=sqlalchemy_imageattach.context.current_store)

	Gets the byte string of the image from the store.

	Parameters:	store (Store) – the storage which contains the image.
current_store
by default

	Returns:	the binary data of the image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mimetype = Column('mimetype', String(length=255), table=None, nullable=False)

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The mimetype of the image
e.g. 'image/jpeg', 'image/png'.

	
object_id

	(numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) The identifier number of the image.
It uses the primary key if it’s integer, but can be overridden,
and must be implemented when the primary key is not integer or
composite key.

Changed in version 1.1.0: Since 1.1.0, it provides a more default implementation for
UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] primary keys. If a primary key is not
composite and UUID [https://docs.python.org/3/library/uuid.html#uuid.UUID] type, object_id for that doesn’t
have to be implemented.

	
object_type

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The identifier string of the image type.
It uses __tablename__ (which replaces underscores with
hyphens) by default, but can be overridden.

	
open_file(store=sqlalchemy_imageattach.context.current_store, use_seek=False)

	Opens the file-like object which is a context manager
(that means it can used for with [https://docs.python.org/3/reference/compound_stmts.html#with] statement).

If use_seek is True (though False by default)
it guarentees the returned file-like object is also seekable
(provides seek() method).

	Parameters:	store (Store) – the storage which contains image files.
current_store
by default

	Returns:	the file-like object of the image, which is a context
manager (plus, also seekable only if use_seek
is True)

	Return type:	file,
FileProxy,
file-like object

	
original = Column('original', Boolean(), table=None, nullable=False, default=ColumnDefault(False))

	(bool [https://docs.python.org/3/library/functions.html#bool]) Whether it is original or resized.

	
size

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) The same to the pair of (width,
height).

	
width = Column('width', Integer(), table=None, primary_key=True, nullable=False)

	(numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) The image’s width.

	
sqlalchemy_imageattach.entity.ImageSet

	Alias of SingleImageSet.

Deprecated since version Use: SingleImageSet to distinguish from
MultipleImageSet.

Changed in version 1.0.0: Renamed to SingleImageSet, and this remains only for backward
compatibility. It will be completely removed in the future.

alias of SingleImageSet

	
class sqlalchemy_imageattach.entity.ImageSubset(_query, **identity_map)

	Image set which is contained by MultipleImageSet.

It contains one canonical original image and
its thumbnails, as it’s also a subtype of BaseImageSet
like SingleImageSet.

New in version 1.0.0.

	
class sqlalchemy_imageattach.entity.MultipleImageSet(entities, session=None)

	Used for image_attachment() is congirued with uselist=True
option.

Like SingleImageSet, it is a subtype of BaseImageQuery.
It can be filtered using filter()
method or sorted using order() method.

Unlike SingleImageSet, it is not a subtype of
BaseImageSet, as it can contain multiple image sets.
That means, it’s not image set, but set of image sets.
Its elements are ImageSubset objects, that are image sets.

New in version 1.0.0.

	
get_image_set(**pk)

	Choose a single image set to deal with. It takes criteria through
keyword arguments. The given criteria doesn’t have to be satisfied by
any already attached images. Null image sets returned by such criteria
can be used for attaching a new image set.

	Parameters:	**pk – keyword arguments of extra discriminating primary key
column names to its values

	Returns:	a single image set

	Return type:	ImageSubset

	
image_sets

	(typing.Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][ImageSubset]) The set of
attached image sets.

	
class sqlalchemy_imageattach.entity.SingleImageSet(entities, session=None)

	Used for image_attachment() is congirued uselist=False
option (which is default).

It contains one canonical original image and
its thumbnails, as it’s a subtype of BaseImageSet.

New in version 1.0.0: Renamed from ImageSet.

	
sqlalchemy_imageattach.entity.image_attachment(*args, **kwargs)

	The helper function, decorates raw
relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship] function, sepcialized for
relationships between Image subtypes.

It takes the same parameters as relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship].

If uselist is True, it becomes possible to attach multiple
image sets. In order to attach multiple image sets, image entity types
must have extra discriminating primary key columns to group each image set.

If uselist is False (which is default), it becomes
possible to attach only a single image.

	Parameters:	
	*args – the same arguments as
relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship]

	**kwargs – the same keyword arguments as
relationship() [http://docs.sqlalchemy.org/en/rel_1_1/orm/relationship_api.html#sqlalchemy.orm.relationship]

	Returns:	the relationship property

	Return type:	sqlalchemy.orm.properties.RelationshipProperty [http://docs.sqlalchemy.org/en/rel_1_1/orm/internals.html#sqlalchemy.orm.properties.RelationshipProperty]

New in version 1.0.0: The uselist parameter.

sqlalchemy_imageattach.file — File proxies

The file-like types which wraps/proxies an other file objects.

	
class sqlalchemy_imageattach.file.FileProxy(wrapped)

	The complete proxy for wrapped file-like object.

	Parameters:	wrapped (file, file-like object) – the file object to wrap

	
close()

	Closes the file. It’s a context manager as well,
so prefer with [https://docs.python.org/3/reference/compound_stmts.html#with] statement than direct call of
this:

with FileProxy(file_) as f:
 print f.read()

	
next()

	Implementation of Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator] protocol.

	
read(size=-1)

	Reads at the most size bytes from the file.
It maybe less if the read hits EOF before obtaining size bytes.

	Parameters:	size – bytes to read. if it is negative or omitted,
read all data until EOF is reached. default is -1

	Returns:	read bytes. an empty string when EOF is encountered
immediately

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
readline(size=None)

	Reads an entire line from the file. A trailing newline
character is kept in the string (but maybe absent when a file
ends with an incomplete line).

	Parameters:	size (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – if it’s present and non-negative, it is maximum
byte count (including trailing newline) and
an incomplete line maybe returned

	Returns:	read bytes

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

Note

Unlike stdio‘s fgets(), the returned string
contains null characters ('\0') if they occurred in
the input.

	
readlines(sizehint=None)

	Reads until EOF using readline().

	Parameters:	sizehint (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – if it’s present, instead of reading up to EOF,
whole lines totalling approximately sizehint
bytes (or more to accommodate a final whole line)

	Returns:	a list containing the lines read

	Return type:	List [https://docs.python.org/3/library/typing.html#typing.List][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]

	
xreadlines()

	The same to iter(file). Use that.

Deprecated since version long: time ago

Use iter() [https://docs.python.org/3/library/functions.html#iter] instead.

	
class sqlalchemy_imageattach.file.ReusableFileProxy(wrapped)

	It memorizes the current position (tell()) when the context
enters and then rewinds (seek()) back to the memorized
initial_offset when the context exits.

	
class sqlalchemy_imageattach.file.SeekableFileProxy(wrapped)

	The almost same to FileProxy except it has
seek() and tell() methods in addition.

	
seek(offset, whence=0)

	Sets the file’s current position.

	Parameters:	
	offset (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the offset to set

	whence – see the docs of file.seek().
default is os.SEEK_SET

	
tell()

	Gets the file’s current position.

	Returns:	the file’s current position

	Return type:	numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]

sqlalchemy_imageattach.migration — Storage migration

	
class sqlalchemy_imageattach.migration.MigrationPlan(function)

	Iterable object that yields migrated images.

	
execute(callback=None)

	Execute the plan. If optional callback is present,
it is invoked with an Image
instance for every migrated image.

	Parameters:	callback (Callable[[Image],
None]) – an optional callback that takes
an Image
instance. it’s called zero or more times

	
sqlalchemy_imageattach.migration.migrate(session, declarative_base, source, destination)

	Migrate all image data from source storage to destination
storage. All data in source storage are not deleted.

It does not execute migration by itself alone. You need to
execute() the plan it returns:

migrate(session, Base, source, destination).execute()

Or iterate it using for [https://docs.python.org/3/reference/compound_stmts.html#for] statement:

for i in migrate(session, Base, source, destination):
 # i is an image just done migration
 print(i)

	Parameters:	
	session (sqlalchemy.orm.session.Session [http://docs.sqlalchemy.org/en/rel_1_1/orm/session_api.html#sqlalchemy.orm.session.Session]) – SQLAlchemy session

	declarative_base (sqlalchemy.ext.declarative.api.DeclarativeMeta) – declarative base class created by
sqlalchemy.ext.declarative.declarative_base() [http://docs.sqlalchemy.org/en/rel_1_1/orm/extensions/declarative/api.html#sqlalchemy.ext.declarative.declarative_base]

	source (Store) – the storage to copy image data from

	destination (Store) – the storage to copy image data to

	Returns:	iterable migration plan which is not executed yet

	Return type:	MigrationPlan

	
sqlalchemy_imageattach.migration.migrate_class(session, cls, source, destination)

	Migrate all image data of cls from source storage to
destination storage. All data in source storage are not
deleted.

It does not execute migration by itself alone. You need to
execute() the plan it returns:

migrate_class(session, UserPicture, source, destination).execute()

Or iterate it using for [https://docs.python.org/3/reference/compound_stmts.html#for] statement:

for i in migrate_class(session, UserPicture, source, destination):
 # i is an image just done migration
 print(i)

	Parameters:	
	session (sqlalchemy.orm.session.Session [http://docs.sqlalchemy.org/en/rel_1_1/orm/session_api.html#sqlalchemy.orm.session.Session]) – SQLAlchemy session

	cls (sqlalchemy.ext.declarative.api.DeclarativeMeta) – declarative mapper class

	source (Store) – the storage to copy image data from

	destination (Store) – the storage to copy image data to

	Returns:	iterable migration plan which is not executed yet

	Return type:	MigrationPlan

sqlalchemy_imageattach.store — Image storage backend interface

This module declares a common interface for physically agnostic storage
backends. Whatever a way to implement a storage, it needs only common
operations of the interface. This consists of some basic operations
like writing, reading, deletion, and finding urls.

Modules that implement the storage interface inside
sqlalchemy_imageattach.storages package might help to implement
a new storage backend.

	
class sqlalchemy_imageattach.store.Store

	The interface of image storage backends. Every image storage
backend implementation has to implement this.

	
delete(image)

	Delete the file of the given image.

	Parameters:	image (sqlalchemy_imageattach.entity.Image) – the image to delete

	
delete_file(object_type, object_id, width, height, mimetype)

	Deletes all reproducible files related to the image.
It doesn’t raise any exception even if there’s no such file.

	Parameters:	
	object_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the object type of the image to put
e.g. 'comics.cover'

	object_id (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the object identifier number of the image to put

	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the width of the image to delete

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the height of the image to delete

	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – the mimetype of the image to delete
e.g. 'image/jpeg'

	
get_file(object_type, object_id, width, height, mimetype)

	Gets the file-like object of the given criteria.

	Parameters:	
	object_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the object type of the image to find
e.g. 'comics.cover'

	object_id (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the object identifier number of the image to find

	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the width of the image to find

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the height of the image to find

	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – the mimetype of the image to find
e.g. 'image/jpeg'

	Returns:	the file of the image

	Return type:	file-like object, file

	Raises:	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – when such file doesn’t exist

Note

This is an abstract method which has to be implemented
(overridden) by subclasses.

It’s not for consumers but implementations, so consumers
should use open() method instead of this.

	
get_url(object_type, object_id, width, height, mimetype)

	Gets the file-like object of the given criteria.

	Parameters:	
	object_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the object type of the image to find
e.g. 'comics.cover'

	object_id (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the object identifier number of the image to find

	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the width of the image to find

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the height of the image to find

	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – the mimetype of the image to find
e.g. 'image/jpeg'

	Returns:	the url locating the image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

Note

This is an abstract method which has to be implemented
(overridden) by subclasses.

It’s not for consumers but implementations, so consumers
should use locate() method instead of this.

	
locate(image)

	Gets the URL of the given image.

	Parameters:	image (sqlalchemy_imageattach.entity.Image) – the image to get its url

	Returns:	the url of the image

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
open(image, use_seek=False)

	Opens the file-like object of the given image.
Returned file-like object guarantees:

	context manager protocol

	collections.abc.Iterable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable] protocol

	collections.abc.Iterator [https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator] protocol

	read() [https://docs.python.org/3/library/io.html#io.RawIOBase.read] method

	readline() [https://docs.python.org/3/library/io.html#io.IOBase.readline] method

	readlines() [https://docs.python.org/3/library/io.html#io.IOBase.readlines] method

To sum up: you definitely can read the file, in with [https://docs.python.org/3/reference/compound_stmts.html#with]
statement and for [https://docs.python.org/3/reference/compound_stmts.html#for] loop.

Plus, if use_seek option is True:

	seek() [https://docs.python.org/3/library/io.html#io.IOBase.seek] method

	tell() [https://docs.python.org/3/library/io.html#io.IOBase.tell] method

For example, if you want to make a local copy of
the image:

import shutil

with store.open(image) as src:
 with open(filename, 'wb') as dst:
 shutil.copyfileobj(src, dst)

	Parameters:	
	image (sqlalchemy_imageattach.entity.Image) – the image to get its file

	use_seek (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the file should seekable.
if True it maybe buffered in the memory.
default is False

	Returns:	the file-like object of the image, which is a context
manager (plus, also seekable only if use_seek
is True)

	Return type:	file, FileProxy,
file-like object

	Raises:	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – when such file doesn’t exist

	
put_file(file, object_type, object_id, width, height, mimetype, reproducible)

	Puts the file of the image.

	Parameters:	
	file (file-like object, file) – the image file to put

	object_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the object type of the image to put
e.g. 'comics.cover'

	object_id (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the object identifier number of the image to put

	width (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the width of the image to put

	height (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the height of the image to put

	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – the mimetype of the image to put
e.g. 'image/jpeg'

	reproducible (bool [https://docs.python.org/3/library/functions.html#bool]) – True only if it’s reproducible by
computing e.g. resized thumbnails.
False if it cannot be reproduced
e.g. original images

Note

This is an abstract method which has to be implemented
(overridden) by subclasses.

It’s not for consumers but implementations, so consumers
should use store() method instead of this.

	
store(image, file)

	Stores the actual data file of the given image.

with open(imagefile, 'rb') as f:
 store.store(image, f)

	Parameters:	
	image (sqlalchemy_imageattach.entity.Image) – the image to store its actual data file

	file (file-like object, file) – the image file to put

sqlalchemy_imageattach.util — Utilities

This module provides some utility functions to manipulate
docstrings at runtime. It’s useful for adjusting the docs
built by Sphinx without making the code ugly.

	
sqlalchemy_imageattach.util.append_docstring(docstring, *lines)

	Appends the docstring with given lines:

function.__doc__ = append_docstring(
 function.__doc__,
 '.. note::'
 '',
 ' Appended docstring!'
)

	Parameters:	
	docstring – a docstring to be appended

	*lines – lines of trailing docstring

	Returns:	new docstring which is appended

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sqlalchemy_imageattach.util.append_docstring_attributes(docstring, locals)

	Manually appends class’ docstring with its attribute docstrings.
For example:

class Entity(object):
 # ...

 __doc__ = append_docstring_attributes(
 __doc__,
 dict((k, v) for k, v in locals()
 if isinstance(v, MyDescriptor))
)

	Parameters:	
	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – class docstring to be appended

	locals (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]) – attributes dict

	Returns:	appended docstring

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sqlalchemy_imageattach.util.get_minimum_indent(docstring, ignore_before=1)

	Gets the minimum indent string from the docstring:

>>> get_minimum_indent('Hello')
''
>>> get_minimum_indent('Hello\n world::\n yeah')
' '

	Parameters:	
	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – the docstring to find its minimum indent

	ignore_before (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – ignore lines before this line.
usually docstrings which follow PEP 8 [https://www.python.org/dev/peps/pep-0008]
have no indent for the first line,
so its default value is 1

	Returns:	the minimum indent string which consists of only
whitespaces (tabs and/or spaces)

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

sqlalchemy_imageattach.version — Version data

	
sqlalchemy_imageattach.version.SQLA_COMPAT_VERSION = '0.9.0'

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The minimum compatible SQLAlchemy version string
e.g. '0.9.0'.

New in version 1.0.0.

	
sqlalchemy_imageattach.version.SQLA_COMPAT_VERSION_INFO = (0, 9, 0)

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) The triple of minimum compatible SQLAlchemy version
e.g. (0, 9, 0).

New in version 1.0.0.

	
sqlalchemy_imageattach.version.VERSION = '1.1.0'

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The version string e.g. '1.2.3'.

	
sqlalchemy_imageattach.version.VERSION_INFO = (1, 1, 0)

	(tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) The triple of version numbers e.g. (1, 2, 3).

sqlalchemy_imageattach.stores.fs — Filesystem-backed image storage

It provides two filesystem-backed image storage implementations:

	FileSystemStore

	It stores image files into the filesystem of the specified path,
but locate() method returns URLs
of the hard-coded base URL.

	HttpExposedFileSystemStore

	The mostly same to FileSystemStore except it provides
WSGI middleware (wsgi_middleware())
which actually serves image files and its
locate() method returns URLs
based on the actual requested URL.

	
class sqlalchemy_imageattach.stores.fs.BaseFileSystemStore(path)

	Abstract base class of FileSystemStore and
HttpExposedFileSystemStore.

	
class sqlalchemy_imageattach.stores.fs.FileSystemStore(path, base_url)

	Filesystem-backed storage implementation with hard-coded URL
routing.

	
class sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore(path, prefix='__images__', host_url_getter=None, cors=False)

	Filesystem-backed storage implementation with WSGI middleware
which serves actual image files.

from flask import Flask
from sqlalchemy_imageattach.stores.fs import HttpExposedFileSystemStore

app = Flask(__name__)
fs_store = HttpExposedFileSystemStore('userimages', 'images/')
app.wsgi_app = fs_store.wsgi_middleware(app.wsgi_app)

To determine image urls, the address of server also has to be determined.
Although it can be automatically detected using wsgi_middleware(),
WSGI unfortunately is not always there. For example, Celery tasks aren’t
executed by HTTP requests, so there’s no reachable Host
header.

When its host url is not determined you would get RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]
if you try locating image urls:

Traceback (most recent call last):
 ...
 File "/.../sqlalchemy_imageattach/stores/fs.py", line 93, in get_url
 base_url = self.base_url
 File "/.../sqlalchemy_imageattach/stores/fs.py", line 151, in base_url
 type(self)
RuntimeError: could not determine image url. there are two ways to workaround this:
- set host_url_getter parameter to sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore
- use sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore.wsgi_middleware
see docs of sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore for more details

For such case, you can optionally set host_url_getter option.
It takes a callable which takes no arguments and returns a host url string
like 'http://servername/'.

fs_store = HttpExposedFileSystemStore(
 'userimages', 'images/',
 host_url_getter=lambda:
 'https://{0}/'.format(app.config['SERVER_NAME'])
)

	Parameters:	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – file system path of the directory to store image files

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – the prepended path of the url.
'__images__' by default

	host_url_getter (Callable[[], str [https://docs.python.org/3/library/stdtypes.html#str]]) – optional parameter to manually determine host url.
it has to be a callable that takes nothing and
returns a host url string

	cors (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to allow the Cross-Origin Resource Sharing [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS]
for any origin

New in version 1.0.0: Added host_url_getter option.

	
wsgi_middleware(app, cors=False)

	WSGI middlewares that wraps the given app and serves
actual image files.

fs_store = HttpExposedFileSystemStore('userimages', 'images/')
app = fs_store.wsgi_middleware(app)

	Parameters:	app (Callable[[],
Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) – the wsgi app to wrap

	Returns:	the another wsgi app that wraps app

	Return type:	StaticServerMiddleware

	
class sqlalchemy_imageattach.stores.fs.StaticServerMiddleware(app, url_path, dir_path, block_size=8192, cors=False)

	Simple static server WSGI middleware.

	Parameters:	
	app (Callable[[],
Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]]) – the fallback app when the path is not scoped in
url_path

	url_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the exposed path to url

	dir_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – the filesystem directory path to serve

	block_size (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the block size in bytes

	cors (bool [https://docs.python.org/3/library/functions.html#bool]) – whether or not to allow the Cross-Origin Resource Sharing [https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS]
for any origin

	
sqlalchemy_imageattach.stores.fs.guess_extension(mimetype)

	Finds the right filename extension (e.g. '.png') for
the given mimetype (e.g. image/png).

	Parameters:	mimetype (str [https://docs.python.org/3/library/stdtypes.html#str]) – mimetype string e.g. 'image/jpeg'

	Returns:	filename extension for the mimetype

	Return type:	str [https://docs.python.org/3/library/stdtypes.html#str]

sqlalchemy_imageattach.stores.s3 — AWS S3 [http://aws.amazon.com/s3/] backend storage

The backend storage implementation for Simple Storage Service
provided by Amazon Web Services.

	
sqlalchemy_imageattach.stores.s3.BASE_URL_FORMAT = 'https://{0}.s3.amazonaws.com'

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The format string of base url of AWS S3.
Contains no trailing slash.
Default is 'https://{0}.s3.amazonaws.com'.

	
sqlalchemy_imageattach.stores.s3.DEFAULT_MAX_AGE = 31536000

	(numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) The default max-age seconds of
Cache-Control. It’s the default value of
S3Store.max_age attribute.

	
exception sqlalchemy_imageattach.stores.s3.AuthMechanismError(url, code, msg, hdrs, fp)

	Raised when the bucket doesn’t support Signature Version 2
(AWS2Auth) anymore but supports only Signature Version 4
(AWS4Auth).

For the most part, it can be resolved by determining
S3Store.region.

See also

Table of S3 regions and supported signature versions [https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region]

New in version 1.1.0.

	
class sqlalchemy_imageattach.stores.s3.S3Request(url, bucket, access_key, secret_key, data=None, headers={}, method=None, content_type=None)

	Remained for backward compatibility. Use S3RequestV2
(which was renamed) or S3RequestV4 (which is the current
standard).

Deprecated since version 1.1.0: Renamed to S3RequestV2.

	
class sqlalchemy_imageattach.stores.s3.S3RequestV2(url, bucket, access_key, secret_key, data=None, headers={}, method=None, content_type=None)

	HTTP request for S3 REST API which does authentication using
Signature Version 2 [https://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html] (AWS2Auth) which has been deprecated since
January 30, 2014.

New in version 1.1.0.

Changed in version 1.1.0: Renamed from S3Request (which is now deprecated).

	
class sqlalchemy_imageattach.stores.s3.S3RequestV4(url, bucket, region, access_key, secret_key, data=None, headers={}, method=None, content_type=None)

	HTTP request for S3 REST API which does authentication using
Signature Version 4 [https://docs.aws.amazon.com/AmazonS3/latest/API/sig-v4-authenticating-requests.html] (AWS4Auth).

New in version 1.1.0.

	
class sqlalchemy_imageattach.stores.s3.S3SandboxStore(underlying, overriding, access_key=None, secret_key=None, max_age=31536000, underlying_prefix='', overriding_prefix='', underlying_region=None, overriding_region=None, max_retry=5)

	It stores images into physically two separated S3 buckets while
these look like logically exist in the same store. It takes two buckets
for read-only and overwrite: underlying and overriding.

It’s useful for development/testing purpose, because you can use
the production store in sandbox.

	Parameters:	
	underlying (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of underlying bucket for read-only

	overriding (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of overriding bucket to record
overriding modifications

	max_age (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the max-age seconds of Cache-Control.
default is DEFAULT_MAX_AGE

	overriding_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – means the same to S3Store.prefix but
it’s only applied for overriding

	underlying_prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – means the same to S3Store.prefix but
it’s only applied for underlying

	overriding_region (str [https://docs.python.org/3/library/stdtypes.html#str]) – Means the same to S3Store.region but
it’s only applied for overriding.

	underlying_region (str [https://docs.python.org/3/library/stdtypes.html#str]) – Means the same to S3Store.region but
it’s only applied for underlying.

	max_retry (int [https://docs.python.org/3/library/functions.html#int]) – Retry the given number times if uploading fails.
5 by default.

	Raises:	AuthMechanismError – Raised when the bucket doesn’t support
Signature Version 2 (AWS2Auth)
anymore but supports only Signature Version 4 (AWS4Auth).
For the most part, it can be resolved by
determining region parameter.

New in version 1.1.0: The underlying_region, overriding_region, and max_retry
parameters.

	
DELETED_MARK_MIMETYPE = 'application/x-sqlalchemy-imageattach-sandbox-deleted'

	All keys marked as “deleted” have this mimetype as
its Content-Type header.

	
overriding = None

	(S3Store) The overriding store to record overriding
modification.

	
underlying = None

	(S3Store) The underlying store for read-only.

	
class sqlalchemy_imageattach.stores.s3.S3Store(bucket, access_key=None, secret_key=None, max_age=31536000, prefix='', public_base_url=None, region=None, max_retry=5)

	Image storage backend implementation using S3 [http://aws.amazon.com/s3/]. It implements
Store interface.

If you’d like to use it with Amazon CloudFront [http://aws.amazon.com/cloudfront/], pass the base url of
the distribution to public_base_url. Note that you should configure
Forward Query Strings to Yes when you create the distribution.
Because SQLAlchemy-ImageAttach will add query strings to public URLs
to invalidate cache when the image is updated.

	Parameters:	
	bucket (str [https://docs.python.org/3/library/stdtypes.html#str]) – the buckect name

	max_age (numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) – the max-age seconds of Cache-Control.
default is DEFAULT_MAX_AGE

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – the optional key prefix to logically separate stores
with the same bucket. not used by default

	public_base_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional url base for public urls.
useful when used with cdn

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – The region code that the bucket belongs to.
If None it authenticates using Signature Version 2 (AWS2Auth) which has been deprecated since
January 30, 2014. Because Signature Version 4
(AWS4Auth) requires to determine the region code before
signing API requests.
Since recent regions don’t support Signature Version 2
(AWS2Auth) but only Signature Version 4 (AWS4Auth),
if you set region to None and
bucket doesn’t support Signature Version 2
(AWS2Auth) anymore AuthMechanismError would be
raised.
None by default.

	max_retry (int [https://docs.python.org/3/library/functions.html#int]) – Retry the given number times if uploading fails.
5 by default.

	Raises:	AuthMechanismError – Raised when the bucket doesn’t support
Signature Version 2 (AWS2Auth)
anymore but supports only Signature Version 4 (AWS4Auth).
For the most part, it can be resolved by
determining region parameter.

New in version 1.1.0: The region and max_retry parameters.

Changed in version 0.8.1: Added public_base_url parameter.

	
bucket = None

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The S3 bucket name.

	
max_age = None

	(numbers.Integral [https://docs.python.org/3/library/numbers.html#numbers.Integral]) The max-age seconds of
Cache-Control.

	
max_retry = None

	(int [https://docs.python.org/3/library/functions.html#int]) Retry the given number times if uploading fails.

New in version 1.1.0.

	
prefix = None

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The optional key prefix to logically separate
stores with the same bucket.

	
public_base_url = None

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The optional url base for public urls.

	
region = None

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The region code that the bucket belongs to.
If None it authenticates using Signature Version 2 (AWS2Auth)
which has been deprecated since January 30, 2014. Because Signature
Version 4 (AWS4Auth) requires to determine the region code before
signing API requests.

Since recent regions don’t support Signature Version 2 (AWS2Auth) but
only Signature Version 4 (AWS4Auth), if you set region to
None and bucket doesn’t support Signature Version 2
(AWS2Auth) anymore AuthMechanismError would be raised.

New in version 1.1.0.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sqlalchemy_imageattach	

 	
 	
 sqlalchemy_imageattach.context	

 	
 	
 sqlalchemy_imageattach.entity	

 	
 	
 sqlalchemy_imageattach.file	

 	
 	
 sqlalchemy_imageattach.migration	

 	
 	
 sqlalchemy_imageattach.store	

 	
 	
 sqlalchemy_imageattach.stores	

 	
 	
 sqlalchemy_imageattach.stores.fs	

 	
 	
 sqlalchemy_imageattach.stores.s3	

 	
 	
 sqlalchemy_imageattach.util	

 	
 	
 sqlalchemy_imageattach.version	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	append_docstring() (in module sqlalchemy_imageattach.util)

 	
 	append_docstring_attributes() (in module sqlalchemy_imageattach.util)

 	AuthMechanismError

B

 	
 	BASE_URL_FORMAT (in module sqlalchemy_imageattach.stores.s3)

 	BaseFileSystemStore (class in sqlalchemy_imageattach.stores.fs)

 	
 	BaseImageQuery (class in sqlalchemy_imageattach.entity)

 	BaseImageSet (class in sqlalchemy_imageattach.entity)

 	bucket (sqlalchemy_imageattach.stores.s3.S3Store attribute)

C

 	
 	close() (sqlalchemy_imageattach.file.FileProxy method)

 	context_stacks (in module sqlalchemy_imageattach.context)

 	
 	ContextError

 	created_at (sqlalchemy_imageattach.entity.Image attribute)

 	current_store (in module sqlalchemy_imageattach.context)

D

 	
 	DEFAULT_MAX_AGE (in module sqlalchemy_imageattach.stores.s3)

 	delete() (sqlalchemy_imageattach.store.Store method)

 	
 	delete_file() (sqlalchemy_imageattach.store.Store method)

 	DELETED_MARK_MIMETYPE (sqlalchemy_imageattach.stores.s3.S3SandboxStore attribute)

E

 	
 	execute() (sqlalchemy_imageattach.migration.MigrationPlan method)

F

 	
 	FileProxy (class in sqlalchemy_imageattach.file)

 	FileSystemStore (class in sqlalchemy_imageattach.stores.fs)

 	find_thumbnail() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	
 	from_blob() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	from_file() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	from_raw_file() (sqlalchemy_imageattach.entity.BaseImageSet method)

G

 	
 	generate_thumbnail() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	get_current_context_id() (in module sqlalchemy_imageattach.context)

 	get_current_store() (in module sqlalchemy_imageattach.context)

 	get_file() (sqlalchemy_imageattach.store.Store method)

 	
 	get_image_set() (sqlalchemy_imageattach.entity.MultipleImageSet method)

 	get_minimum_indent() (in module sqlalchemy_imageattach.util)

 	get_url() (sqlalchemy_imageattach.store.Store method)

 	guess_extension() (in module sqlalchemy_imageattach.stores.fs)

H

 	
 	height (sqlalchemy_imageattach.entity.Image attribute)

 	
 	HttpExposedFileSystemStore (class in sqlalchemy_imageattach.stores.fs)

I

 	
 	identity_attributes() (sqlalchemy_imageattach.entity.Image class method)

 	identity_map (sqlalchemy_imageattach.entity.Image attribute)

 	Image (class in sqlalchemy_imageattach.entity)

 	
 	image_attachment() (in module sqlalchemy_imageattach.entity)

 	image_sets (sqlalchemy_imageattach.entity.MultipleImageSet attribute)

 	ImageSet (in module sqlalchemy_imageattach.entity)

 	ImageSubset (class in sqlalchemy_imageattach.entity)

L

 	
 	LocalProxyStore (class in sqlalchemy_imageattach.context)

 	locate() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	(sqlalchemy_imageattach.entity.Image method)

 	(sqlalchemy_imageattach.store.Store method)

M

 	
 	make_blob() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	(sqlalchemy_imageattach.entity.Image method)

 	max_age (sqlalchemy_imageattach.stores.s3.S3Store attribute)

 	max_retry (sqlalchemy_imageattach.stores.s3.S3Store attribute)

 	
 	migrate() (in module sqlalchemy_imageattach.migration)

 	migrate_class() (in module sqlalchemy_imageattach.migration)

 	MigrationPlan (class in sqlalchemy_imageattach.migration)

 	mimetype (sqlalchemy_imageattach.entity.Image attribute)

 	MultipleImageSet (class in sqlalchemy_imageattach.entity)

N

 	
 	next() (sqlalchemy_imageattach.file.FileProxy method)

O

 	
 	object_id (sqlalchemy_imageattach.entity.Image attribute)

 	object_type (sqlalchemy_imageattach.entity.Image attribute), [1]

 	open() (sqlalchemy_imageattach.store.Store method)

 	open_file() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	(sqlalchemy_imageattach.entity.Image method)

 	
 	original (sqlalchemy_imageattach.entity.BaseImageSet attribute)

 	(sqlalchemy_imageattach.entity.Image attribute)

 	overriding (sqlalchemy_imageattach.stores.s3.S3SandboxStore attribute)

P

 	
 	pop_store_context() (in module sqlalchemy_imageattach.context)

 	prefix (sqlalchemy_imageattach.stores.s3.S3Store attribute)

 	public_base_url (sqlalchemy_imageattach.stores.s3.S3Store attribute)

 	
 	push_store_context() (in module sqlalchemy_imageattach.context)

 	put_file() (sqlalchemy_imageattach.store.Store method)

 	
 Python Enhancement Proposals

 	PEP 8

R

 	
 	read() (sqlalchemy_imageattach.file.FileProxy method)

 	readline() (sqlalchemy_imageattach.file.FileProxy method)

 	readlines() (sqlalchemy_imageattach.file.FileProxy method)

 	
 	region (sqlalchemy_imageattach.stores.s3.S3Store attribute)

 	require_original() (sqlalchemy_imageattach.entity.BaseImageSet method)

 	ReusableFileProxy (class in sqlalchemy_imageattach.file)

S

 	
 	S3Request (class in sqlalchemy_imageattach.stores.s3)

 	S3RequestV2 (class in sqlalchemy_imageattach.stores.s3)

 	S3RequestV4 (class in sqlalchemy_imageattach.stores.s3)

 	S3SandboxStore (class in sqlalchemy_imageattach.stores.s3)

 	S3Store (class in sqlalchemy_imageattach.stores.s3)

 	seek() (sqlalchemy_imageattach.file.SeekableFileProxy method)

 	SeekableFileProxy (class in sqlalchemy_imageattach.file)

 	SingleImageSet (class in sqlalchemy_imageattach.entity)

 	size (sqlalchemy_imageattach.entity.Image attribute)

 	SQLA_COMPAT_VERSION (in module sqlalchemy_imageattach.version)

 	SQLA_COMPAT_VERSION_INFO (in module sqlalchemy_imageattach.version)

 	sqlalchemy_imageattach (module)

 	sqlalchemy_imageattach.context (module)

 	
 	sqlalchemy_imageattach.entity (module)

 	sqlalchemy_imageattach.file (module)

 	sqlalchemy_imageattach.migration (module)

 	sqlalchemy_imageattach.store (module)

 	sqlalchemy_imageattach.stores (module)

 	sqlalchemy_imageattach.stores.fs (module)

 	sqlalchemy_imageattach.stores.s3 (module)

 	sqlalchemy_imageattach.util (module)

 	sqlalchemy_imageattach.version (module)

 	StaticServerMiddleware (class in sqlalchemy_imageattach.stores.fs)

 	Store (class in sqlalchemy_imageattach.store)

 	store() (sqlalchemy_imageattach.store.Store method)

 	store_context() (in module sqlalchemy_imageattach.context)

T

 	
 	tell() (sqlalchemy_imageattach.file.SeekableFileProxy method)

U

 	
 	underlying (sqlalchemy_imageattach.stores.s3.S3SandboxStore attribute)

V

 	
 	VECTOR_TYPES (in module sqlalchemy_imageattach.entity)

 	
 	VERSION (in module sqlalchemy_imageattach.version)

 	VERSION_INFO (in module sqlalchemy_imageattach.version)

W

 	
 	width (sqlalchemy_imageattach.entity.Image attribute)

 	
 	wsgi_middleware() (sqlalchemy_imageattach.stores.fs.HttpExposedFileSystemStore method)

X

 	
 	xreadlines() (sqlalchemy_imageattach.file.FileProxy method)

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		SQLAlchemy-ImageAttach

 		Declaring Image Entities

 		Object type

 		Object identifier

 		Storages

 		Choosing the right storage implementation

 		Using filesystem on the local development box

 		Implementing your own storage

 		Migrating storage

 		Attaching Images

 		Context

 		Attaching from file object

 		Attaching from byte string

 		Getting image urls

 		Getting image files

 		Getting image binary

 		Thumbnails

 		Expliciting storage

 		Implicit contexts

 		Multiple Image Sets

 		Object identifier

 		Choosing image set to deal with

 		SQLAlchemy-ImageAttach Changelog

 		Version 1.1.0

 		Version 1.0.0

 		Version 0.9.0

 		Version 0.8.2

 		Version 0.8.1

 		Version 0.8.0

 		Version 0.8.0.dev-20130531

 		sqlalchemy_imageattach.context — Scoped context of image storage

 		sqlalchemy_imageattach.entity — Image entities

 		sqlalchemy_imageattach.file — File proxies

 		sqlalchemy_imageattach.migration — Storage migration

 		sqlalchemy_imageattach.store — Image storage backend interface

 		sqlalchemy_imageattach.util — Utilities

 		sqlalchemy_imageattach.version — Version data

 		sqlalchemy_imageattach.stores.fs — Filesystem-backed image storage

 		sqlalchemy_imageattach.stores.s3 — AWS S3 backend storage

_static/down.png

_static/comment.png

